Electromagnetic field interaction with biological tissues for cancer and regenerative medicine

Bangor, 13 July 2018, Pontio PL5

Coffee and Welcome Remarks: 8:30-9:00

M1: Dielectrophoresis, sensing and	Chair: Arnaud Pothier
stem cells analysis	UNILIM/XLIM, France
9:00-9:30	Trends in the biomedical applications of
(Keynote)	dielectrophoresis
	Ron Pethig, The University of Edinburgh, UK
9:30-9:50	Isolation and characterization of the Cancer
	Stem cells (CSCs): one question, many answers
	Sofiane Saada, UNILM/CAPTuR, France
9:50-10:10	BiCMOS integrated microfluidic cell sorting
	platform for cell study
	Arnaud Pothier, UNILIM/XLIM, France
10:10-10:30	Dielectric characterization of brain cancer cell
	lines
	Wesam Gamal, Bangor University, UK

Coffee Break 10:30-11:00

M2: Electrostimulation approaches	Chair: Caterina Merla
	ENEA, Italy
11:00-11:30	Developing plastic bioelectronic devices for
(Keynote)	measuring and manipulating cells in vitro and
	in vivo
	Rodney O'Connor, Ecole des Mines de Saint-Etienne/
	Center of Microelectronis of Provence, France
11:30-11:50	Electro-permeabilization of isolated cancer
	stem cells with a push-pull configuration of
	high power MOSFETs
	Ilan Davies, Creo Medical/Bangor University, UK
11:50-12:10	Ultra-short pulsed electric fields: a first study
	on cancer stem cells
	Caterina Merla, ENEA, Italy
12:10-12:30	Disruption of microtubule dynamics by
	nanosecond pulsed electric fields in U87
	human glioblastoma cells
	Lynn Carr, UNILIM/XLIM, France

A1: Tissue level applications and	Chair: Chris Hancock
thermal effects	Creo Medical, UK
13:30-14:00	Microwaves in biological tissues; ripples or
(Keynote)	tsunamis?
	Paul Sibbons, Northwick Park Institute for Medical
	Research, UK
14:00-14:30	Creating biological scaffolds and matrices for
(Keynote)	clinical application
	Tahera Ansari, Northwick Park Institute for Medical
	Research, UK
14:30-14:50	Factors that control temperature gradient
	when microwave energy is used to heat tissue
	Malcom White, Creo Medical, UK

Coffee Break 14:50-15:20

A2: New microwave energy delivery	Chair: Cristiano Palego
approaches and non-thermal effects	Bangor University, UK
15:20-15:40	A Miniature flexible microwave applicator for
	the ablation of pancreatic tumours at 5.8GHz
	William Taplin, Creo Medical/Bangor University, UK
15:40-16:00	Preclinical efficacy of a microwave and
	adrenaline based haemostat utilizing a novel
	coaxial cable structure
	Shaun Preston, Creo Medical/Bangor University, UK
16:00-16:20	Microwave electric field at 2.45 GHz
	modulates the β-adrenergic response of
	human embryonic stem cell-derived
	cardiomyocytes
	Catrin Williams, Cardiff University, UK

16:20-16:30 Final Remarks and Greetings

